Over the last years, significant advances have been made in robotic manipulation, but still, the handling of non-rigid objects, such as cloth garments, is an open problem. Physical interaction with non-rigid objects is uncertain and complex to model. Thus, extracting useful information from sample data can considerably improve modeling performance. However, the training of such models is a challenging task due to the high-dimensionality of the state representation. In this paper, we propose Controlled Gaussian Process Dynamical Model (CGPDM) for learning high-dimensional, nonlinear dynamics by embedding it in a low-dimensional manifold. A CGPDM is constituted by a low-dimensional latent space with an associated dynamics where external control variables can act and a mapping to the observation space. The parameters of both maps are marginalized out by considering Gaussian Process (GP) priors. Hence, a CGPDM projects a high-dimensional state space into a smaller dimension latent space in which is feasible to learn the system dynamics from training data. The modeling capacity of CGPDM has been tested in both a simulated and a real scenario, where it proved to be capable of generalizing over a wide range of movements and confidently predicting the cloth motions obtained by previously unseen sequences of control actions.
translated by 谷歌翻译
在本文中,我们提出了一种基于模型的增强学习(MBRL)算法,称为\ emph {Monte Carlo概率的学习控制}(MC-PILCO)。该算法依赖于高斯流程(GPS)来对系统动力学进行建模以及蒙特卡洛方法以估计策略梯度。这定义了一个框架,在该框架中,我们可以在其中选择以下组件的选择:(i)成本函数的选择,(ii)使用辍学的策略优化,(iii)通过在使用中的结构内核来提高数据效率GP型号。上述方面的组合会极大地影响MC-PILCO的性能。在模拟卡车杆环境中的数值比较表明,MC-PILCO具有更好的数据效率和控制性能W.R.T.最先进的基于GP的MBRL算法。最后,我们将MC-PILCO应用于实际系统,考虑到具有部分可测量状态的特定系统。我们讨论了在策略优化过程中同时建模测量系统和国家估计器的重要性。已在模拟和两个真实系统(Furuta pendulum和一个球形式钻机)中测试了所提出的溶液的有效性。
translated by 谷歌翻译
Recent years have seen a proliferation of research on adversarial machine learning. Numerous papers demonstrate powerful algorithmic attacks against a wide variety of machine learning (ML) models, and numerous other papers propose defenses that can withstand most attacks. However, abundant real-world evidence suggests that actual attackers use simple tactics to subvert ML-driven systems, and as a result security practitioners have not prioritized adversarial ML defenses. Motivated by the apparent gap between researchers and practitioners, this position paper aims to bridge the two domains. We first present three real-world case studies from which we can glean practical insights unknown or neglected in research. Next we analyze all adversarial ML papers recently published in top security conferences, highlighting positive trends and blind spots. Finally, we state positions on precise and cost-driven threat modeling, collaboration between industry and academia, and reproducible research. We believe that our positions, if adopted, will increase the real-world impact of future endeavours in adversarial ML, bringing both researchers and practitioners closer to their shared goal of improving the security of ML systems.
translated by 谷歌翻译
When simulating soft robots, both their morphology and their controllers play important roles in task performance. This paper introduces a new method to co-evolve these two components in the same process. We do that by using the hyperNEAT algorithm to generate two separate neural networks in one pass, one responsible for the design of the robot body structure and the other for the control of the robot. The key difference between our method and most existing approaches is that it does not treat the development of the morphology and the controller as separate processes. Similar to nature, our method derives both the "brain" and the "body" of an agent from a single genome and develops them together. While our approach is more realistic and doesn't require an arbitrary separation of processes during evolution, it also makes the problem more complex because the search space for this single genome becomes larger and any mutation to the genome affects "brain" and the "body" at the same time. Additionally, we present a new speciation function that takes into consideration both the genotypic distance, as is the standard for NEAT, and the similarity between robot bodies. By using this function, agents with very different bodies are more likely to be in different species, this allows robots with different morphologies to have more specialized controllers since they won't crossover with other robots that are too different from them. We evaluate the presented methods on four tasks and observe that even if the search space was larger, having a single genome makes the evolution process converge faster when compared to having separated genomes for body and control. The agents in our population also show morphologies with a high degree of regularity and controllers capable of coordinating the voxels to produce the necessary movements.
translated by 谷歌翻译
Filming sport videos from an aerial view has always been a hard and an expensive task to achieve, especially in sports that require a wide open area for its normal development or the ones that put in danger human safety. Recently, a new solution arose for aerial filming based on the use of Unmanned Aerial Vehicles (UAVs), which is substantially cheaper than traditional aerial filming solutions that require conventional aircrafts like helicopters or complex structures for wide mobility. In this paper, we describe the design process followed for building a customized UAV suitable for sports aerial filming. The process includes the requirements definition, technical sizing and selection of mechanical, hardware and software technologies, as well as the whole integration and operation settings. One of the goals is to develop technologies allowing to build low cost UAVs and to manage them for a wide range of usage scenarios while achieving high levels of flexibility and automation. This work also shows some technical issues found during the development of the UAV as well as the solutions implemented.
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
How would you fairly evaluate two multi-object tracking algorithms (i.e. trackers), each one employing a different object detector? Detectors keep improving, thus trackers can make less effort to estimate object states over time. Is it then fair to compare a new tracker employing a new detector with another tracker using an old detector? In this paper, we propose a novel performance measure, named Tracking Effort Measure (TEM), to evaluate trackers that use different detectors. TEM estimates the improvement that the tracker does with respect to its input data (i.e. detections) at frame level (intra-frame complexity) and sequence level (inter-frame complexity). We evaluate TEM over well-known datasets, four trackers and eight detection sets. Results show that, unlike conventional tracking evaluation measures, TEM can quantify the effort done by the tracker with a reduced correlation on the input detections. Its implementation is publicly available online at https://github.com/vpulab/MOT-evaluation.
translated by 谷歌翻译
Reinforcement learning allows machines to learn from their own experience. Nowadays, it is used in safety-critical applications, such as autonomous driving, despite being vulnerable to attacks carefully crafted to either prevent that the reinforcement learning algorithm learns an effective and reliable policy, or to induce the trained agent to make a wrong decision. The literature about the security of reinforcement learning is rapidly growing, and some surveys have been proposed to shed light on this field. However, their categorizations are insufficient for choosing an appropriate defense given the kind of system at hand. In our survey, we do not only overcome this limitation by considering a different perspective, but we also discuss the applicability of state-of-the-art attacks and defenses when reinforcement learning algorithms are used in the context of autonomous driving.
translated by 谷歌翻译
This paper describes a prototype software and hardware platform to provide support to field operators during the inspection of surface defects of non-metallic pipes. Inspection is carried out by video filming defects created on the same surface in real-time using a "smart" helmet device and other mobile devices. The work focuses on the detection and recognition of the defects which appears as colored iridescence of reflected light caused by the diffraction effect arising from the presence of internal stresses in the inspected material. The platform allows you to carry out preliminary analysis directly on the device in offline mode, and, if a connection to the network is established, the received data is transmitted to the server for post-processing to extract information about possible defects that were not detected at the previous stage. The paper presents a description of the stages of design, formal description, and implementation details of the platform. It also provides descriptions of the models used to recognize defects and examples of the result of the work.
translated by 谷歌翻译
Animals run robustly in diverse terrain. This locomotion robustness is puzzling because axon conduction velocity is limited to a few ten meters per second. If reflex loops deliver sensory information with significant delays, one would expect a destabilizing effect on sensorimotor control. Hence, an alternative explanation describes a hierarchical structure of low-level adaptive mechanics and high-level sensorimotor control to help mitigate the effects of transmission delays. Motivated by the concept of an adaptive mechanism triggering an immediate response, we developed a tunable physical damper system. Our mechanism combines a tendon with adjustable slackness connected to a physical damper. The slack damper allows adjustment of damping force, onset timing, effective stroke, and energy dissipation. We characterize the slack damper mechanism mounted to a legged robot controlled in open-loop mode. The robot hops vertically and planar over varying terrains and perturbations. During forward hopping, slack-based damping improves faster perturbation recovery (up to 170%) at higher energetic cost (27%). The tunable slack mechanism auto-engages the damper during perturbations, leading to a perturbation-trigger damping, improving robustness at minimum energetic cost. With the results from the slack damper mechanism, we propose a new functional interpretation of animals' redundant muscle tendons as tunable dampers.
translated by 谷歌翻译